Hebbian plasticity requires compensatory processes on multiple timescales
نویسندگان
چکیده
We review a body of theoretical and experimental research on Hebbian and homeostatic plasticity, starting from a puzzling observation: while homeostasis of synapses found in experiments is a slow compensatory process, most mathematical models of synaptic plasticity use rapid compensatory processes (RCPs). Even worse, with the slow homeostatic plasticity reported in experiments, simulations of existing plasticity models cannot maintain network stability unless further control mechanisms are implemented. To solve this paradox, we suggest that in addition to slow forms of homeostatic plasticity there are RCPs which stabilize synaptic plasticity on short timescales. These rapid processes may include heterosynaptic depression triggered by episodes of high postsynaptic firing rate. While slower forms of homeostatic plasticity are not sufficient to stabilize Hebbian plasticity, they are important for fine-tuning neural circuits. Taken together we suggest that learning and memory rely on an intricate interplay of diverse plasticity mechanisms on different timescales which jointly ensure stability and plasticity of neural circuits.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity'.
منابع مشابه
The temporal paradox of Hebbian learning and homeostatic plasticity.
Hebbian plasticity, a synaptic mechanism which detects and amplifies co-activity between neurons, is considered a key ingredient underlying learning and memory in the brain. However, Hebbian plasticity alone is unstable, leading to runaway neuronal activity, and therefore requires stabilization by additional compensatory processes. Traditionally, a diversity of homeostatic plasticity phenomena ...
متن کاملCooperation across timescales between and Hebbian and homeostatic plasticity
We review a body of theoretical and experimental research on the interactions of homeostatic and Hebbian plasticity, starting from a puzzling observation: While homeostasis of synapses found in experiments is slow, homeostasis of synapses in most mathematical models is rapid, or even instantaneous. Even worse, most existing plasticity models cannot maintain stability in simulated networks with ...
متن کاملModeling the Dynamic Interaction of Hebbian and Homeostatic Plasticity
Hebbian and homeostatic plasticity together refine neural circuitry, but their interactions are unclear. In most existing models, each form of plasticity directly modifies synaptic strength. Equilibrium is reached when the two are inducing equal and opposite changes. We show that such models cannot reproduce ocular dominance plasticity (ODP) because negative feedback from the slow homeostatic p...
متن کاملModels of Metaplasticity: A Review of Concepts
Part of hippocampal and cortical plasticity is characterized by synaptic modifications that depend on the joint activity of the pre- and post-synaptic neurons. To which extent those changes are determined by the exact timing and the average firing rates is still a matter of debate; this may vary from brain area to brain area, as well as across neuron types. However, it has been robustly observe...
متن کاملA Globally Asymptotically Stable Plasticity Rule for Firing Rate Homeostasis
How can neural circuits maintain stable activity states when they are constantly being modified by Hebbian processes that are notorious for being unstable? A new synaptic plasticity mechanism is presented here that enables a neuron to obtain homeostasis of its firing rate over longer timescales while leaving the neuron free to exhibit fluctuating dynamics in response to external inputs. Mathema...
متن کامل